Menú secundario

Artículos SCI

 



2017



Reactividad de Sólidos

Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in Concentrated Solar Power plants

Benitez-Guerrero, M; Valverde, JM; Sanchez-Jimenez, PE; Perejon, A; Perez-Maqueda, LA
Solar Energy, 153 (2017) 188-199
DOI: 10.1016/j.solener.2017.05.068



Abstract

Thermochemical energy storage in Concentrated Solar Power plants by means of the Calcium-Looping process is a promising novel technology that would allow for a higher share of renewables. A main benefit of this technology is the use of widely available, non-toxic and environmentally friendly calcium carbonate minerals as raw materials to store energy. Efficient integration of the Calcium-Looping process into Concentrated Solar Power plants involves the endothermic calcination of CaCO3 in the solar receiver while the exothermic carbonation of CaO is carried out at high temperature under high CO2 partial pressure. The heat released by this reaction is carried out by the excess CO2 and employed for power generation by means of a closed CO2 cycle. This work explores the multicycle Calcium-Looping performance of naturally occurring CaCO3 minerals such as limestone, chalk and marble for thermochemical energy storage in Concentrated Solar Power plants. Despite their similar composition (almost pure CaCO3), these minerals exhibit a significant difference in their Calcium-Looping multicycle activity, which may be attributed to differences in particle size and microstructure. Pore plugging at the Calcium-Looping conditions for thermochemical energy storage tested in our work is a main limiting mechanism on the multicycle CaO carbonation activity.

Septiembre, 2017 · DOI: 10.1016/j.solener.2017.05.068




Nanotecnología en Superficies y Plasma

High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells

Garcia-Garcia, FJ; Beltran, AM; Yubero, E; Gonzalez-Elipe, AR; Lambert, RM
Journal of Power Sources, 363 (2017) 251-259
DOI: 10.1016/j.jpowsour.2017.07.085



Abstract

Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of,gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable I-V characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work. 

Septiembre, 2017 · DOI: 10.1016/j.jpowsour.2017.07.085




Nanotecnología en Superficies y Plasma

In Vitro and in Vivo Study of Poly(Lactic-co-Glycolic) (PLGA) Membranes Treated with Oxygen Plasma and Coated with Nanostructured Hydroxyapatite Ultrathin Films for Guided Bone Regeneration Processes

Torres-Lagares, D; Castellanos-Cosano, L; Serrera-Figallo, MA; Garcia-Garcia, FJ; Lopez-Santos, C; Barranco, A; Elipe, ARG; Rivera-Jimenez, C; Gutierrez-Perez, JL
Polymers, 9 (2017) art. 410
DOI: 10.3390/polym9090410



Abstract

The novelty of this study is the addition of an ultrathin layer of nanostructured hydroxyapatite (HA) on oxygen plasmamodified poly(lactic-co-glycolic) (PLGA) membranes (PO2) in order to evaluate the efficiency of this novel material in bone regeneration. Methods: Two groups of regenerative membranes were prepared: PLGA (control) and PLGA/PO2/HA (experimental). These membranes were subjected to cell cultures and then used to cover bone defects prepared on the skulls of eight experimental rabbits. Results: Cell morphology and adhesion of the osteoblasts to the membranes showed that the osteoblasts bound to PLGA were smaller and with a lower number of adhered cells than the osteoblasts bound to the PLGA/PO2/HA membrane (p < 0.05). The PLGA/PO2/HA membrane had a higher percentage of viable cells bound than the control membrane (p < 0.05). Both micro-CT and histological evaluation confirmed that PLGA/PO2/HA membranes enhance bone regeneration. A statistically significant difference in the percentage of osteoid area in relation to the total area between both groups was found. Conclusions: The incorporation of nanometric layers of nanostructured HA into PLGA membranes modified with PO2 might be considered for the regeneration of bone defects. PLGA/PO2/HA membranes promote higher osteosynthetic activity, new bone formation, and mineralisation than the PLGA control group.

Septiembre, 2017 · DOI: 10.3390/polym9090410




Materiales de Diseño para la Energía y Medioambiente

High-temperature thermal conductivity of biomorphic SiC/Si ceramics

Ramirez-Rico, J.; Singh, M.; Zhu, D.; Martinez-Fernandez, J.
Journal of Materials Science, 52 (2017) 10038-10046
DOI: 10.1007/s10853-017-1199-y



Abstract

Thermal conductivity of biomorphic SiC/Si, a silicon carbide + silicon containing two phase material, was evaluated using the laser steady-state heat flux method. These materials were processed via silicon melt infiltration of wood-derived carbon scaffolds. In this approach, heat flux was measured through the thickness when one side of the specimen was heated with a 10.6-A mu m CO2 laser. A thin mullite layer was applied to the heated surface to ensure absorption and minimize reflection losses, as well as to ensure a consistent emissivity to facilitate radiative loss corrections. The influence of the mullite layer was accounted for in the thermal conductivity calculations. The effect of microstructure and composition (inherited from the wood carbonaceous performs) on measured conductivity was evaluated. To establish a baseline for comparison, a dense, commercially available sintered SiC ceramic was also evaluated. It was observed that at a given temperature, thermal conductivity falls between that of single-crystal silicon and fine-grained polycrystalline SiC and can be rationalized in terms of the SiC volume fraction in biomorphic SiC/Si material.

Septiembre, 2017 · DOI: 10.1007/s10853-017-1199-y




Materiales Coloidales

Europium-doped NaGd(WO4)(2) nanophosphors: synthesis, luminescence and their coating with fluorescein for pH sensing

Laguna, M; Escudero, A; Nuñez, NO; Becerro, AI; Ocaña, M
Dalton Transactions, 46 (2017) 11575-11583
DOI: 10.1039/c7dt01986f



Abstract

Uniform Eu-doped NaGd(WO4)(2) nanophosphors with a spherical shape have been synthesized for the first time by using a wet chemistry method based on a homogeneous precipitation process at low temperature (120 degrees C) in ethylene glycol/water mixtures. The obtained nanoparticles crystallized into the tetragonal structure and presented polycrystalline character. The europium content in such phosphors has been optimized through the analysis of the luminescence dynamics (lifetime measurements). By coating the Eu3+-doped wolframate based nanoparticles with fluorescein through a layer-by-layer (LbL) approach, a wide range (4-10) ratiometric pH-sensitive sensor has been developed, which uses the pH insensitive emission of Eu3+ as a reference.

 

Septiembre, 2017 · DOI: 10.1039/c7dt01986f




Reactividad de Sólidos

Influence of milling parameters on the solid-gas synthesis of TiCxN1-x by mechanically induced self-sustaining reaction

Chicardi, E; Gotor, FJ; Alcala, MD; Cordoba, JM
Powder Technology, 319 (2017) 12-18
DOI: 10.1016/j.powtec.2017.06.035



Abstract

The synthesis of a titanium carbonitride solid solution (TiCxN1 − x) performed in a high-energy planetary mill by a solid-gas Mechanically induced Self-sustaining Reaction (MSR) was used to study the influence of a full set of experimental milling parameters on the ignition time (tig) as a measure of the mechanical dose rate provided by the mill. The highly exothermic Ti-C-N mixture was selected to ensure no competitiveness between MSR and diffusion-controlled routes under the milling conditions employed. The results showed that the dependence of tig on the spinning rate followed a potential function, with a potential factor higher than the value of 3 that would be obtained if a perfect collision model is assumed. The scalability of milling processes performed using planetary mills was confirmed. The results suggested that to define a milling experiment, it is necessary to provide not only the Ball-to-Powder mass Ratio (BPR) and spinning rate values, as is usually performed, but also the full set of milling parameters including the nature of the milling media (vial and balls), the number and size of balls, the mass of the powder charge, the pressure of the reactive gas and even the volume of the vial.

Septiembre, 2017 · DOI: 10.1016/j.powtec.2017.06.035




Propiedades mecánicas, modelización y caracterización de cerámicos avanzados

Carbon nanofibers replacing graphene oxide in ceramic composites as a reinforcing-phase: Is it feasible?

Cano-Crespo, Rafael; Malmal Moshtaghioun, Bibi; Gomez-Garcia, Diego; Dominguez-Rodriguez, Arturo; Moreno, Rodrigo
Journal of the European Ceramic Society, 37 (2017) 3791-3796
DOI: 10.1016/j.jeurceramsoc.2017.03.027



Abstract

In recent years, the interest of graphene and graphene-oxide has increased extraordinarily due to the outstanding properties concurring in this material. In ceramic science, the possibility of combining excellent electrical conductivities together with an enhancement of mechanical properties has motivated the research in fabrication of graphene oxide-reinforced ceramic composites despite the intrinsic difficulties for sintering. In this work a comparison is made between graphene oxide-reinforced alumina composites and carbon nanofiber-reinforced alumina ones. It will be concluded that the improvement of mechanical properties is scarce, if any. Since carbon nanofibers have also a good electrical conductivity their importance for future applications as a replacement of more sophisticated but expensive graphene-based ceramic composites will be stressed.

Septiembre, 2017 · DOI: 10.1016/j.jeurceramsoc.2017.03.027




Nanotecnología en Superficies y Plasma

Enhanced green fluorescent protein in optofluidic Fabry-Perot microcavity to detect laser induced temperature changes in a bacterial culture

Lahoz, F; Martin, IR; Walo, D; Freire, R; Gil-Rostra, J; Yubero, F; Gonzalez-Elipe, AR
Applied Physics Letters, 111 (2017) 111103
DOI: 10.1063/1.4990870



Abstract

Thermal therapy using laser sources can be used in combination with other cancer therapies to eliminate tumors. However, high precision temperature control is required to avoid damage in healthy surrounding tissues. Therefore, in order to detect laser induced temperature changes, we have used the fluorescence signal of the enhanced Green Fluorescent Protein (eGFP) over-expressed in an E. coli bacterial culture. For that purpose, the bacteria expressing eGFP are injected in a Fabry-Perot (FP) optofluidic planar microcavity. In order to locally heat the bacterial culture, external infrared or ultraviolet lasers were used. Shifts in the wavelengths of the resonant FP modes are used to determine the temperature increase as a function of the heating laser pump power. Laser induced local temperature increments up to 6-7 degrees C were measured. These results show a relatively easy way to measure laser induced local temperature changes using a FP microcavity and using eGFP as a molecular probe instead of external nanoparticles, which could damage/alter the cell. Therefore, we believe that this approach can be of interest for the study of thermal effects in laser induced thermal therapies. 

Septiembre, 2017 · DOI: 10.1063/1.4990870




Materiales Coloidales

Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications

Escudero, Alberto; Becerro, Ana I.; Carrillo-Carrion, Carolina; Nunez, Nuria O.; Zyuzin, Mikhail V.; Laguna, Mariano; Gonzalez-Mancebo, Daniel; Ocana, Manuel; Parak, Wolfgang J.
Nanophotonics, 6 (2017) 881-921
DOI: 10.1515/nanoph-2017-0007



Abstract

Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence) and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.

Septiembre, 2017 · DOI: 10.1515/nanoph-2017-0007




Materiales de Diseño para la Energía y Medioambiente

Biomorphic ceramics from wood-derived precursors

Ramirez-Rico, J.; Martinez-Fernandez, J.; Singh, M.
International Materials Reviews, 62 (2017) Issue 8
DOI: 10.1080/09506608.2017.1354429



Abstract

Materials development is driven by microstructural complexity and, in many cases, inspired by biological systems such as bones, shells and wood. In one approach, one selects the main microstructural features responsible for improved properties and design processes to obtain materials with such microstructures (continuous-fibre-reinforced ceramics, porous ceramics, fibrous ceramic monoliths, etc.). In a different approach, it is possible to use natural materials directly as microstructural templates. Biomorphic ceramics are produced from natural and renewable resources (wood or wood-derived products). A wide variety of SiC-based ceramics can be fabricated by infiltration of silicon or silicon alloys into cellulose-derived carbonaceous templates, providing a low-cost route to advanced ceramic materials with near-net shape potential and amenable to rapid prototyping. These materials have tailorable microstructure and properties, and behave like ceramic materials manufactured by advanced ceramic processing approaches. This review aims to be a comprehensive description of the development of bioSiC ceramics: from wood templates and their microstructure to potential applications of bioSiC materials.

Agosto, 2017 · DOI: 10.1080/09506608.2017.1354429




Materiales Coloidales

Crystal structure, NIR luminescence and X-ray computed tomography of Nd3+:Ba0.3Lu0.7F2.7 nanospheres

Gonzalez-Mancebo, D; Becerro, AI; Cantelar, E; Cusso, F; Briat, A; Boyer, D; Ocana, M
Dalton Transactions, 46 (2017) 6580-6587
DOI: 10.1039/c7dt00453b



Abstract

Uniform, hydrophilic 50 nm diameter Nd3+-doped Ba0.3Lu0.7F2.7 nanospheres are synthesized at 120 degrees C using a singular one-pot method based on the use of ethylene glycol as solvent, in the absence of any additive. The composition and crystal structure of the undoped material are analyzed in detail using ICP and XRD, which reveals a BaF2 cubic crystal structure that is able to incorporate 70 mol% of Lu ions. This finding contrasts with the reported phase diagram of the system, where the maximum solubility is around 30 mol% Lu. XRD proves as well that the Ba0.3Lu0.7F2.7 structure is able to incorporate Nd3+ ions up to, at least 10 mol%, without altering the uniform particles morphology. The Nd-doped particles exhibit near-infrared luminescence when excited at 810 nm. The maximum emission intensity with the minimum concentration quenching effect is obtained at 1.5% Nd doping level. X-ray computed tomography experiments are carried out on powder samples of the latter composition. The sample significantly absorbs X-ray photons, thus demonstrating that the Nd3+-doped Ba0.3Lu0.7F2.7 nanospheres are good candidates as contrast agents in computed tomography.

Agosto, 2017 · DOI: 10.1039/c7dt00453b




Nanotecnología en Superficies y Plasma

One-reactor plasma assisted fabrication of ZnO@TiO2 multishell nanotubes: assessing the impact of a full coverage on the photovoltaic performance

Filippin, Alejandro Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idigoras, Jesus; Burdet, Pierre; Sanchez-Valencia, Juan R.; Barranco, Angel; Migdley, Paul A.; Anta, Juan A.; Borras, Ana
Scientific Reports, 7 (2017) art 9621
DOI: 10.1038/s41598-017-09601-7



Abstract

This paper addresses the fabrication of vertically aligned ZnO@TiO2multishell nanotubes by a combined full vacuum-plasma approach at mild temperatures. The growth is carried out within the premises of a one-reactor approach, i.e. minimizing the number of vacuum chambers and sample transferences. In this way, the interface between ZnO and TiO2 is fully preserved from humidity thus increasing ZnO durability and stability. These nanostructures are studied by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy in STEM (EDX-STEM). High density one-dimensional arrays of these nanotubes formed on FTO substrates are applied as photoanode in a dye-sensitized solar cell (DSC). The evolution of the dye adsorption capacity and solar cells parameters are explored as a function of the crystallinity and thickness of the TiO2 shell. The results show the critical effect of a full coverage by TiO2 of ZnO core to explain the mixed results found in the literature.

Agosto, 2017 · DOI: 10.1038/s41598-017-09601-7




Reactividad de Sólidos

Flash sintering of highly insulating nanostructured phase-pure BiFeO3

Perez-Maqueda, LA; Gil-Gonzalez, E; Perejon, A; Lebrun, JM; Sanchez-Jimenez, PE; Raj, R
Journal of the American Ceramic Society, 100 (2017) 3365-3369
DOI: 10.1111/jace.14990



Abstract

We show that BiFeO3, that is electrically homogeneous, is a good insulator, and has a low dielectric constant (the properties desired in its applications), can be produced by flash sintering, which is nominally difficult to achieve by conventional and spark plasma sintering processes. The flash-sintered specimens had a uniform microstructure with a nanometric grain size of similar to 20 nm.

Agosto, 2017 · DOI: 10.1111/jace.14990




Reactividad de Sólidos

Simultaneous adsorption and photocatalytic behavior of hybrid mesoporous ZnS-SiO2 nanocomposite

Emrooz, HBM; Gotor, FJ
Materials Research Express, 4 (2017) art. 085037
DOI: 10.1088/2053-1591/aa85cf



Abstract

Mesoporous ZnS-SiO2 nanocomposite was synthesized with a facile process. At first a large pore volume (1.86 cm(3).g(-1)), moderate pore size (about 12.8 nm) and moderate surface area (586 m(2).g(-1)) mesoporous SiO2 was synthesized in an acidic PH using cationic surfactant. ZnS nanoparticles were infiltrated in the porosities of the synthesized SiO2, with a room temperature post grafting method. The synthesized particles have been characterized with transmission electron microscopy (TEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), furrier transformation infrared spectroscopy (FTIR) and diffuse reflectance spectroscopy (DRS). Results confirm the mesoporous characteristics of ZnS-SiO2 nanocomposite with specific surface area as high as 248 m(2).g(-1), pore volume of 0.89 cm(3).g(-1) and average pore diameter of about 14.4 nm. Simultaneous adsorption-photocatalytic behavior of this hybrid mesoporous nanocomposite for degradation of methylene blue (MB) was investigated. The efficiency of this material was compared with that of mesoporous SiO2 and also lone ZnS nanoparticles. Results showed that by using ultraviolet irradiation, ZnS-SiO2 can degrade greater than 85% of MB only after 3 min. The case for lone ZnS is less than 5% after 30 min. Degradation mechanism of MB using ZnS-SiO2 and ultraviolet radiation was explained with simultaneous adsorption and photocatalytic phenomena. Ultraviolet irradiation can degrade adsorbed MB of mesoporous SiO2 which can prevent it from saturation.

Agosto, 2017 · DOI: 10.1088/2053-1591/aa85cf




Nanotecnología en Superficies y Plasma

Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

Pauly, N; Yubero, F; Espinos, JP; Tougaard, S
Applied Optics, 56 (2017) 6611-6621
DOI: 10.1364/AO.56.006611



Abstract

Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3 - 2.0 keV. This technique allows the evaluation of the optical response in these ultraviolet spectral regions of a thin layer of material, and the analysis is straightforward. It is performed within the dielectric response theory by means of the QUEELS-epsilon(k,omega)-REELS software developed by Tougaard and Yubero [Surf. Interface Anal. 36, 824 ( 2004)]. The method consists basically in the fitting of experimentally determined single-scattering electron energy loss cross sections with a parametric energy loss function of the corresponding material, to the one calculated within a dielectric response formalism. The obtained refractive index and extinction coefficients, as well as the identified electronic transitions are compared, when available, with previously published results. 

Agosto, 2017 · DOI: 10.1364/AO.56.006611




Materiales de Diseño para la Energía y Medioambiente

Cutin from agro-waste as a raw material for the production of bioplastics

Heredia-Guerrero, JA; Heredia, A; Dominguez, E; Cingolani, R; Bayer, IS; Athanassiou, A; Benitez, JJ
Journal of Experimental Botany, 68 (2017) 5401-5410
DOI: 10.1093/jxb/erx272



Abstract

Cutin is the main component of plant cuticles constituting the framework that supports the rest of the cuticle components. This biopolymer is composed of esterified bi- and trifunctional fatty acids. Despite its ubiquity in terrestrial plants, it has been underutilized as raw material due to its insolubility and lack of melting point. However, in recent years, a few technologies have been developed to obtain cutin monomers from several agro-wastes at an industrial scale. This review is focused on the description of cutin properties, biodegradability, chemical composition, processability, abundance, and the state of art of the fabrication of cutin-based materials in order to evaluate whether this biopolymer can be considered a source for the production of renewable materials.

Agosto, 2017 · DOI: 10.1093/jxb/erx272




Nanotecnología en Superficies y Plasma - Materiales Nanoestructurados y Microestructura

The role of cobalt hydroxide in deactivation of thin film Co-based catalysts for sodium borohydride hydrolysis

Paladini, M; Arzac, GM; Godinho, V; Hufschmidt, D; de Haro, MCJ; Beltran, AM; Fernandez, A
Applied Catalysis B-Environmental, 210 (2017) 342-351
DOI: 10.1016/j.apcatb.2017.04.005



Abstract

Deactivation of a Co catalyst prepared as thin film by magnetron sputtering was studied for the sodium borohydride (SB) hydrolysis reaction under different conditions. Under high SB concentration in single run experiments, the formation of a B-O passivating layer was observed after 1.5 and 24 h use. This layer was not responsible for the catalyst deactivation. Instead, a peeling-off mechanism produced the loss of cobalt. This peeling-off mechanism was further studied in cycling experiments (14 cycles) under low SB concentrations. Ex-situ study of catalyst surface after use and solid reaction products (precipitates) was performed by X-Ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The presence of cobalt hydroxide and oxyhydroxide was detected as major components on the catalyst surface after use and as precipitates in the supernatant solutions after washing. Cobalt borate, cobalt carbonate and oxycarbonate were also formed but in lesser amounts. These oxidized cobalt species were formed and further detached from the catalyst at the end of the reaction and/or during catalyst washing by decomposition of the unstable in-situ formed cobalt boride. Leaching of cobalt soluble species was negligible. Thin film mechanical detachment was also found but in a smaller extent. To study the influence of catalyst composition on deactivation processes, cycling experiments were performed with Co-B and Co-C catalysts, also prepared as thin films. We found that the deactivation mechanism proposed by us for the pure Co catalyst also occurred for a different pure Co (prepared at higher pressure) and the Co-B and Co-C samples in our experimental conditions. 

Agosto, 2017 · DOI: 10.1016/j.apcatb.2017.04.005




Materiales de Diseño para la Energía y Medioambiente

New insights into surface-functionalized swelling high charged micas: Their adsorption performance for non-ionic organic pollutants

Pazos, MC; Castro, MA; Cota, A; Osuna, FJ; Pavon, E; Alba, MD
Journal of Industrial and Engineering Chemistry, 52 (2017) 179-186
DOI: 10.1016/j.jiec.2017.03.042



Abstract

The major components of the wastewater from the petroleum refineries are benzene, toluene and phenol and one of the techniques applied to the treatment of effluents is sorption using organo-functionalized clay. The materials exploited in the present study are a family of surface-functionalized synthetic micas and their sorption capacities for non-ionic organic pollutants are analyzed. The organo-functionalization of their surface provides them the capacity to sorb effectively non-ionic pollutants in the interface. Their adsorption performance is a function of the alkylamonium properties such as the chain length, the mass fraction and the organization of the organic cation in the interlayer space of the micas.

Agosto, 2017 · DOI: 10.1016/j.jiec.2017.03.042




Reactividad de Sólidos

Large-scale high-temperature solar energy storage using natural minerals

Benitez-Guerrero, Monica; Sarrion, Beatriz; Perejon, Antonio; Sanchez-Jimenez, Pedro E.; Perez-Maqueda, Luis A.; Manuel Valverde, Jose
Solar Energy Materials and Solar Cells, 168 (2017) 14-21
DOI: 10.1016/j.solmat.2017.04.013



Abstract

The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles.

Agosto, 2017 · DOI: 10.1016/j.solmat.2017.04.013




The epigraphic stela of Montoro (Cordoba): the earliest monumental script in Iberia?

Sanjuan, LG; Diaz-Guardamino, M; Wheatley, DW; Barra, JPV; Rodriguez, JAL; Rogerio-Candelera, MA; Erbez, AJ; Barker, D; Strutt, K; Ariza, MC
Antiquity, 91 (2017) 916-932
DOI: 10.15184/aqy.2017.86



Abstract

A remarkable stela from Montoro, southern Spain, is unique in its morphology, epigraphic traits and landscape context. A programme of chemical characterisation, digital imaging, and geo-lithological and epigraphic analyses were conducted to determine its age and significance, and the results were integrated with data from archaeological investigations of the surrounding area. This multi-faceted approach allowed the stela to be interpreted within the context of early interactions between literate Mediterranean societies of the Late Bronze Age and Iron Age and non-literate Iberian societies. A key outcome of this research is a wider understanding of the complex patterns in the use and perception of early scripts.

Agosto, 2017 · DOI: 10.15184/aqy.2017.86




Materiales Avanzados

Thermal study of residues from greenhouse crops plant biomass

Morales, Laura; Garzon, Eduardo; Maria Martinez-Blanes, Jose; Jose Sanchez-Soto, Pedro
Journal of Thermal Analysis and Calorimetry, 129 (2017) 1111-1120
DOI: 10.1007/s10973-017-6243-2



Abstract

The principal aim of this work is to examine the effect of thermal treatments using a muffle furnace (static heating) and by simultaneous TG/DTA (dynamic heating) on selected greenhouse crops plant biomass investigated here as the first time. The effect of fractionation by sieving (<25 and <2.5 mm), preheating at 150 °C for 48 h and leaching with water on the thermal behavior has been studied. The observation of similar profiles of mass variation corresponding to several samples heated in air up to 1150 °C allows to conclude that particle size did not influence the thermal evolution, but the effect of heating cycle is evidenced. Thermal analysis in air of a representative sample showed the several mass variation steps and DTA exothermic effects produced by the complex thermal decomposition and pyrolysis of the organic matter. Elemental analysis (CHNS and O) of the starting samples and thermally treated revealed the effect of the temperature, with formation of ashes with lower C content from 44.37 to 0.70 mass% as a minimum after elimination of organic matter by heating. Leaching increased the thermal mass variation as an effect of elimination of water-soluble components. According to the present results, the size fractionation of the greenhouse crops biomass did not influence the results of elemental composition. The present study has provided results of interest concerning this biomass source of renewable energy originated by the remains of tomato (Solanum lycopersicum L.), being estimated the highest of all the biomass produced by the greenhouse crops agricultural industry in Almería (SE Spain).

Agosto, 2017 · DOI: 10.1007/s10973-017-6243-2




Reactividad de Sólidos

Lead-Free Polycrystalline Ferroelectric Nanowires with Enhanced Curie Temperature

Datta, Anuja; Sanchez-Jimenez, Pedro E.; Al Orabi, Rabih Al Rahal; Calahorra, Yonatan; Ou, Canlin; Sahonta, Suman-Lata; Fornari, Marco; Kar-Narayan, Sohini
Advanced Functional Materials, 27 (2017) 1701169
DOI: 10.1002/adfm.201701169



Abstract

Ferroelectrics are important technological materials with wide-ranging applications in electronics, communication, health, and energy. While lead-based ferroelectrics have remained the predominant mainstay of industry for decades, environmentally friendly lead-free alternatives are limited due to relatively low Curie temperatures (T-C) and/or high cost in many cases. Efforts have been made to enhance T-C through strain engineering, often involving energy-intensive and expensive fabrication of thin epitaxial films on lattice-mismatched substrates. Here, a relatively simple and scalable sol-gel synthesis route to fabricate polycrystalline (Ba0.85Ca0.15)(Zr0.1Ti0.9)O-3 nanowires within porous templates is presented, with an observed enhancement of T-C up to similar to 300 degrees C as compared to similar to 90 degrees C in the bulk. By combining experiments and theoretical calculations, this effect is attributed to the volume reduction in the template-grown nanowires that modifies the balance between different structural instabilities. The results offer a cost-effective solution-based approach for strain-tuning in a promising lead-free ferroelectric system, thus widening their current applicability.

Agosto, 2017 · DOI: 10.1002/adfm.201701169




Reactividad de Sólidos

Characterization of of mechanosynthesized Bi1-xSmxFeO3 samples unencumbered by secondary phases or compositional inhomogeneity

Gil-Gonzalez, E; Perejon, A; Sanchez-Jimenez, PE; Hayward, MA; Criado, JM; Sayagues, MJ; Perez-Maqueda, LA
Journal of Alloys and Compounds, 711 (2017) 541-551
DOI: 10.1016/j.jallcom.2017.03.289



Abstract

High-quality samples, in terms of phase purity and dielectric properties, of composition Bi1-xSmxFeO3 (0.05 <= x <= 0.20) have for the first time been prepared by mechanosynthesis. Close inspection of the powder diffraction data, analysis via Rietveld refinement and TEM microscopy demonstrates that the Bi1-xSmxFeO3 samples contain only perovskite phases. Additionally, by a combination of Rietveld analysis, TEM, DSC, temperature-dependent XRD and permittivity data a tentative phase diagram has been proposed where the high temperature paraelectric phase Pnma has been confirmed for samarium substituted BiFeO3. Regarding the physical properties, the samples resulted to be electrically homogenous and highly insulating at room temperature, suggesting that other sources of conductivity, such as mixed valence of Fe associated with possible oxygen non-stoichiometry, have been avoided during the samples synthesis. In spite of the high quality of the samples, the dielectric and magnetic behaviour of the Bi1-xSmxFeO3 samples change only modestly on Sm substitution, with neither a great change in the resistivity or remnant magnetisation of Sm substituted samples in comparison with BiFeO3. 

Julio, 2017 · DOI: 10.1016/j.jallcom.2017.03.289




Materiales de Diseño para la Energía y Medioambiente

Cs+ immobilization by designed micaceous adsorbent under subcritical conditions

Osuna, FJ; Cota, A; Pavon, E; Pazos, MC; Alba, MD
Applied Clay Science, 143 (2017) 293-299
DOI: 10.1016/j.clay.2017.03.041



Abstract

The adsorption of Cs+ by clay minerals is a complicate process, being cation exchange and frayed-edge sites the major mechanisms that govern it. However, environmental variables have a significant impact on the process. In this work, the influence of the temperature and time in the cesium adsorption capacity of Na-Mica-n (n = 2 and 4) have been explored under subcritical conditions. Those synthetic micas were able to immobilize cations Cs+ combining adsorption at nonspecific sites, at specific sites and chemical reaction. The distribution constant of Cs+ was larger in the Na-Mica-2 denoting a higher concentration of specific adsorption sites when layer charge decreased.

Julio, 2017 · DOI: 10.1016/j.clay.2017.03.041




Nanotecnología en Superficies y Plasma - Tribología y Protección de Superficies

Plasma assisted deposition of single and multistacked TiO2 hierarchical nanotube photoanodes

Filippin, AN; Sanchez-Valencia, JR; Idigoras, J; Rojas, TC; Barranco, A; Anta, JA; Borras, A
Nanoscale, 9 (2017) 8133-8141
DOI: 10.1039/c7nr00923b



Abstract

We present herein an evolved methodology for the growth of nanocrystalline hierarchical nanotubes combining physical vapor deposition of organic nanowires (ONWs) and plasma enhanced chemical vacuum deposition of anatase TiO2 layers. The ONWs act as vacuum removable 1D and 3D templates, with the whole process occurring at temperatures ranging from RT to 250 degrees C. As a result, a high density of hierarchical nanotubes with tunable diameter, length and tailored wall microstructures are formed on a variety of processable substrates as metal and metal oxide films or nanoparticles including transparent conductive oxides. The reiteration of the process leads to the development of an unprecedented 3D nanoarchitecture formed by stacking the layers of hierarchical TiO2 nanotubes. As a proof of concept, we present the superior performance of the 3D nanoarchitecture as a photoanode within an excitonic solar cell with efficiencies as high as 4.69% for a nominal thickness of the anatase layer below 2.75 mu m. Mechanical stability and straightforward implementation in devices are demonstrated at the same time. The process is extendable to other functional oxides fabricated by plasma-assisted methods with readily available applications in energy harvesting and storage, catalysis and nanosensing.

Julio, 2017 · DOI: 10.1039/c7nr00923b




Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Cobalt Carbide Identified as Catalytic Site for the Dehydrogenation of Ethanol to Acetaldehyde

A. Rodríguez-Gómez; J.P. Holgado; A. Caballero
ACS Catalysis, 7 (2017) 5243-5247
DOI: 10.1021/acscatal.7b01348



Abstract

Two cobalt catalysts, Co/SBA-15 and Co/SiO2, have been studied in steam reforming of ethanol (SRE). Besides the steam reforming products, ethoxide dehydrogenation to acetaldehyde is observed as one of the main reactions. Although by hydrogen treatment cobalt is reduced to the metallic state, under SRE conditions, a phase appears that has been identified as cobalt carbide and correlates with acetaldehyde production. These findings provide insights about the catalytic sites, for SRE, in cobalt catalysts. Comparison with previous results shows that these conclusions are not translatable to other cobalt catalysts, stressing the importance of the support on the catalytic behavior of cobalt.

Julio, 2017 · DOI: 10.1021/acscatal.7b01348




Materiales Ópticos Multifuncionales - Materiales Coloidales

Photonic Tuning of the Emission Color of Nanophosphor Films Processed at High Temperature

Geng, Dongling; Lozano, Gabriel; Calvo, Mauricio E.; Nunez, Nuria O.; Becerro, Ana I.; Ocana, Manuel; Miguez, Hernan
Advanced Optical Materials, 5 (2017) art. 1700099
DOI: 10.1002/adom.201700099



Abstract

Photonics offers new possibilities to tailor the photoluminescence process in phosphor-converted light emitting diodes. Herein, it is demonstrated that the emission color of thin layers of rare-earth doped nanocrystals can be strongly modulated in tunable spectral ranges using optical resonators specifically designed to this end. GdVO4:Dy3+ nanoparticles of controlled size and shape are synthesized using a solvothermal method with which highly transparent nanophosphor thin films are prepared. This paper designs and fabricates optical multilayers, which are transparent in the UV and resonant at the frequencies where the Dy3+ ions emit, to prove that the color coordinates of this emitter can be tuned from green to blue or yellow with unprecedented precision. Key to the achievement herein reported is the careful analysis of the structural and optical properties of thin nanophosphor layers with the processing temperature in order to achieve efficient photoluminescence while preserving the transparency of the film. The results open a new path for fundamental and applied research in solid-state lighting in which photonic nanostructures allow controlling the emission properties of state-of-the-art materials without altering their structure or chemical composition.

Julio, 2017 · DOI: 10.1002/adom.201700099




Nanotecnología en Superficies y Plasma

Low-Temperature Plasma Processing of Platinum Porphyrins for the Development of Metal Nanostructured Layers

Filippin, AN; Sanchez-Valencia, JR; Idigoras, J; Macias-Montero, M; Alcaire, M; Aparicio, FJ; Espinos, JP; Lopez-Santos, C; Frutos, F; Barranco, A; Anta, JA; Borras, A
Advanced Materials Interfaces, 4 (2017) 1601233
DOI: 10.1002/admi.201601233



Abstract

This article establishes the bases for a vacuum and plasma supported methodology for the fabrication at mild temperatures of nanostructured platinum in the form of porous layers and nanocolumns using platinum octaethylporphyrin as precursor. In addition, the application of these materials as tunable optical filters and nano-counterelectrodes is proved. On one hand, the transparency in the ultraviolet-visible-near infrared range can be adjusted precisely between 70% and 1% by tuning the deposition and processing conditions, obtaining a high spectral planarity. Deviations of the spectra from an ideal flat filter are below 4%, paving the way to the fabrication of neutral density filters. The transparency limit values yield a sheet resistivity of approximate to 1350 and 120 Omega square(-1), respectively. On the other hand, the catalytic properties of the nanostructures are further demonstrated by their implementation as counterelectrodes of excitonic solar cells surpassing the performance of commercial platinum as counterelectrode in a 20% of the overall cell efficiency due to simultaneous enhancement of short-circuit photocurrent and open-circuit photovoltage. One of the most interesting features of the developed methodology is its straightforward application to other metal porphyrins and phthalocyanines readily sublimable under mild vacuum and temperature conditions.

Julio, 2017 · DOI: 10.1002/admi.201601233




Nanotecnología en Superficies y Plasma

Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation

Gomez-Ramierez, A.; Lopez-Santos, C.; Cantos, M.; Garcia, J. L.; Molina, R.; Cotrino, J.; Espinos, J. P.; Gonzalez-Elipe, A. R.
Scientific Reports, 7 (2017) art. 5924
DOI: 10.1038/s41598-017-06164-5



Abstract

Plasma treatment is recognized as a suitable technology to improve germination efficiency of numerous seeds. In this work Quinoa seeds have been subjected to air plasma treatments both at atmospheric and low pressure and improvements found in germination rate and percentage of success. Seed water uptake by exposure to water vapor, although slightly greater for plasma treated seeds, did not justify the observed germination improvement. To identify other possible factors contributing to germination, the chemical changes experienced by outer parts of the seed upon plasma exposure have been investigated by X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM-EDX). XPS revealed that the outer layers of the Quinoa plasma treated seeds were highly oxidized and appeared enriched in potassium ions and adsorbed nitrate species. Simultaneously, SEM-EDX showed that the enrichment in potassium and other mineral elements extended to the seed pericarp and closer zones. The disappearance from the surface of both potassium ions and nitrate species upon exposure of the plasma treated seeds to water vapor is proposed as a factor favoring germination. The use of XPS to study chemical changes at seed surfaces induced by plasma treatments is deemed very important to unravel the mechanisms contributing to germination improvement.

Julio, 2017 · DOI: 10.1038/s41598-017-06164-5




Nanotecnología en Superficies y Plasma

Formation of Subsurface W5+ Species in Gasochromic Pt/WO3 Thin Films Exposed to Hydrogen

Castillero, Pedro; Rico-Gavira, Victor; Lopez-Santos, Carmen; Barranco, Angel; Perez-Dieste, Virginia; Escudero, Carlos; Espinos, Juan P.; Gonzalez-Elipe, Agustin R.
Journal of Physical Chemistry C, 121 (2017) 15719-15727
DOI: 10.1021/acs.jpcc.7b03385



Abstract

M/WO3 (M = Pt, Pd) systems formed by a porous WO3 thin film decorated by metal nanoparticles are known for their reversible coloring upon exposure to H2 at room temperature. In this work, this gasochromic behavior is investigated in situ by means of near-ambient photoemission (NAPP). Pt/WO3 systems formed by very small Pt nanoparticles (10 ± 1 nm average size) incorporated in the pores of nanocolumnar WO3 thin films prepared by magnetron sputtering at an oblique angle have been exposed to a small pressure of hydrogen at ambient temperature. The recorded UV–vis transmission spectra showed the reversible appearance of a very intense absorption band responsible for the blue coloration of these gasochromic films. In an equivalent experiment carried out in the NAPP spectrometer, W 4f, O 1s, Pt 4f, and valence band photoemission spectra have been recorded at various photon energies to follow the evolution of the reduced tungsten species and hydroxyl groups formed upon film exposure to hydrogen. The obtained results are compared with those of a conventional X-ray photoemission study after hydrogen exposure between 298 and 573 K. As investigated by NAPP, the gasochromic behavior at 298 K is accounted for by a reaction scheme in which hydrogen atoms resulting from the dissociation of H2 onto the Pt nanoparticles are spilt over to the WO3 substrate where they form surface OH–/H2O species and subsurface W5+ cations preferentially located in buried layers of the oxide network.

Julio, 2017 · DOI: 10.1021/acs.jpcc.7b03385




Nanotecnología en Superficies y Plasma

In Situ Determination of the Water Condensation Mechanisms on Superhydrophobic and Superhydrophilic Titanium Dioxide Nanotubes

Macias-Montero, Manuel; Lopez-Santos, Carmen; Nicolas Filippin, A.; Rico, Victor J.; Espinos, Juan P.; Fraxedas, Jordi; Perez-Dieste, Virginia; Escudero, Carlos; Gonzalez-Elipe, Agustin R.; Borras, Ana
Langmuir, 33 (2017) 6449-6456
DOI: 10.1021/acs.langmuir.7b00156



Abstract

One-dimensional (1D) nanostructured surfaces based on high-density arrays of nanowires and nanotubes of photoactive titanium dioxide (TiO2) present a tunable wetting behavior from superhydrophobic to superhydrophilic states. These situations are depicted in a reversible way by simply irradiating with ultraviolet light (superhydrophobic to superhydrophilic) and storage in dark. In this article, we combine in situ environmental scanning electron microscopy (ESEM) and near ambient pressure photoemission analysis (NAPP) to understand this transition. These experiments reveal complementary information at microscopic and atomic level reflecting the surface wettability and chemical state modifications experienced by these 1D surfaces upon irradiation. We pay special attention to the role of the water condensation mechanisms and try to elucidate the relationship between apparent water contact angles of sessile drops under ambient conditions at the macroscale with the formation of droplets by water condensation at low temperature and increasing humidity on the nanotubes surfaces. Thus, for the as-grown nanotubes, we reveal a metastable and superhydrophobic Cassie state for sessile drops that tunes toward water dropwise condensation at the microscale compatible with a partial hydrophobic Wenzel state. For the UV-irradiated surfaces, a filmwise wetting behavior is observed for both condensed water and sessile droplets. NAPP analyses show a hydroxyl accumulation on the as-grown nanotubes surfaces during the exposure to water condensation conditions, whereas the water filmwise condensation on a previously hydroxyl enriched surface is proved for the superhydrophilic counterpart.

Junio, 2017 · DOI: 10.1021/acs.langmuir.7b00156




Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Analysis of Ni species formed on zeolites, mesoporous silica and alumina supports and their catalytic behavior in the dry reforming of methane

Drobna, Helena; Kout, Martin; Soltysek, Agnieszka; Gonzalez-Delacruz, Victor M.; Caballero, Alfonso; Capek, Libor
Reaction Kinetics Mechanisms and Catalysis, 121 (2017) 255-274
DOI: 10.1007/s11144-017-1149-3



Abstract

The presented investigation is focused on the analysis of Ni species formed on microporous (zeolites MFI and FAU) and mesoporous materials (Al-MCM- 41 and SBA-15) and alumina supports and their catalytic behavior in the dry reforming of methane. The paper lays emphasis on the relationship between the catalytic behavior of Ni-based catalysts and their textural/structural properties. Ni-based catalysts were prepared by wet impregnation (11 wt% of Ni) followed by calcination in air and reduction in hydrogen. The properties of Ni-based catalysts were also compared prior and after the catalytic tests. The critical role was played by the high value of the specific surface area and the high strength of the interaction between the Ni species and the support, which both determined the high dispersion and stability of metal Ni-0 particles. Ni-Al-MCM-41 and Ni-SBA-15 showed the values of the conversion of CO2 and CH4 above 90% (stable during 12 h). Slightly lower values of the conversion of CO2 and CH4 were observed over Ni-Al2O3 (also stable during 12 h). In contrast to these materials, Ni-MFI and Ni-FAU exhibited the worse metallic Ni-0 particles dispersion and very bad catalytic behavior.

Junio, 2017 · DOI: 10.1007/s11144-017-1149-3




Materiales para Bioingeniería y Regeneración Tisular

High surface area biopolymeric-ceramic scaffolds for hard tissue engineering

Romero-Sanchez, LB; Borrego-Gonzalez, S; Diaz-Cuenca, A
Biomedical Physics & Engineering Express, 3 (2017) art UNSP 035012
DOI: 10.1088/2057-1976/aa7001



Abstract

The development of scaffolds mimicking native bone tissue composition and structure is a challenge in bone tissue engineering. 3D scaffolds with both an interconnected macropore structure and nanotextured surfaces are required. However, 3D scaffolds processed by microfabrication usually lack of nanotextured surface, while nanotextured materials generated by bottom-up nanofabrication are difficult to process conforming scaffolds having well interconnected microsized cavities. In this work, the processing of reticulated (macropore interconnected) structures using nanostructured precursors has been performed to improve the mechanical properties of the scaffolds. The application of a fibrillar collagen coating, using less than 1 wt% collagen per scaffold, has allow a significant increase of the compressive strength while preserving a high surface area and nanopore accessibility. Besides, the fibrillar nanostructured collagen coating promotes hydroxyapatite mineralization. Two different collagen-coating procedures are applied showing interesting differences in terms of mechanical performance.

Junio, 2017 · DOI: 10.1088/2057-1976/aa7001




Materiales de Diseño para la Energía y Medioambiente

Failure mode and effect analysis of a large scale thin-film CIGS photovoltaic module

Delgado-Sanchez, JM; Sanchez-Cortezon, E; Lopez-Lopez, C; Aninat, R; Alba, MD
Engireering failure analysis, 76 (2017) 55-60
DOI: 10.1016/j.engfailanal.2017.02.004



Abstract

The efficiency of thin-film CIGS based cells at the laboratory scale is now getting closer to conventional Silicon technologies. As a consequence, the long-term stability of CIGS is now one of the main challenges left to address in order to assess its potential as an alternative for photovoltaic plants. This paper reports an overview of the critical risks for the commercial viability of the CIGS thin-film technology. The key causes of the potential failures of this technology are determined through the Failure Mode Analysis and Effects (FMEA) methodology. To validate the results obtained from the FMEA, aging tests and outdoor monitoring were also carried out. Based on the results obtained, we argue that the encapsulation material is the main cause of degradation in CIGS modules. 

Junio, 2017 · DOI: 10.1016/j.engfailanal.2017.02.004




Reactividad de Sólidos

Effect of the impact energy on the chemical homogeneity of a (Ti,Ta,Nb)(C,N) solid solution obtained via a mechanically induced self-sustaining reaction

de La Obra, AG; Gotor, FJ; Chicardi, E
Journal of Alloys and Compounds, 708 (2017) 1008-1017
DOI: 10.1016/j.jallcom.2017.03.109



Abstract

A titanium-tantalum-niobium carbonitride solid solution, (Ti,Ta,Nb)(C,N), was synthesised in a planetary mill via a mechanochemical process that involves a mechanically induced self-sustaining reaction (MSR) from stoichiometric Ti/Ta/Nb/C mixtures that are milled under a nitrogen atmosphere. The influence of the spinning rate of the planetary mill, which determines the impact energy of the milling process, on the ignition time (t(ig)) of the MSR process as well as the chemical homogeneity of the final product was analysed. The results indicated that the dependence of tig on the spinning rate followed a potential function with a potential factor of 4.85, implying a remarkable reduction in the milling time required to induce the self-sustaining reaction at increasing spinning rates (i.e., from 4200 min at 200 rpm to 15 min at 800 rpm). However, the chemical and structural characterisation of the obtained products at ignition without any extra milling treatment indicated that a single solid solution phase was only obtained at the lowest spinning rates (i.e., less than 300 rpm). At increasing rates, the relative amount of the intended solid solution phase continuously decreased, and new undesirable secondary phases were formed. Despite the long milling times required for the milling experiments that were performed at the slowest spinning rates, iron contamination from the milling media was negligible due to the low intensity milling regime.

Junio, 2017 · DOI: 10.1016/j.jallcom.2017.03.109




Reactividad de Sólidos

A novel, simple and rapid route to the synthesis of boron cabonitride nanosheets: combustive gaseous unfolding

Jalaly, Maisam; Jose Gotor, Francisco; Semnan, Masih; Jesus Sayagues, Maria
Scientific Reports, 7 (2017) art. 3453
DOI: 10.1038/s41598-017-03794-7



Abstract

The ternary compound boron carbonitride (BCN) was synthesized in the form of few-layer nanosheets through a mechanically induced self-sustaining reaction (MSR). Magnesium was used to reduce boron trioxide in the presence of melamine in a combustive manner. The process to form the nanostructured material was very rapid (less than 40 min). The prepared powder was investigated by various techniques such as X-ray diffraction (XRD), Fourier Transform infrared (FTIR), Micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and electron energy loss spectroscopy (EELS). The thermal stability and the optical behavior of the BCN nanosheets were also studied by thermal analysis and UV-vis spectroscopy, respectively. The formation mechanism of the nanosheet morphology was described in detail.

Junio, 2017 · DOI: 10.1038/s41598-017-03794-7




Propiedades mecánicas, modelización y caracterización de cerámicos avanzados

High-temperature creep of carbon nanofiber-reinforced and graphene oxide-reinforced alumina composites sintered by spark plasma sintering

Cano-Crespo, Rafael; Malmal Moshtaghioun, Bibi; Gomez-Garcia, Diego; Dominguez-Rodriguez, Arturo; Moreno, Rodrigo
Ceramics International, 43 (2017) 7136-7141
DOI: 10.1016/j.ceramint.2017.02.146



Abstract

Alumina (Al2O3) ceramic composites reinforced with either graphene oxide (GO) or carbon nanofibers (CNFs) were prepared using Spark Plasma Sintering. The effects of GO and CNFs on the microstructure and in consequence on their mechanical properties were investigated. The microstructure of the sintered materials have been characterized quantitatively prior to and after the creep experiments in order to discover the deformation mechanism. Graphene-oxide reinforced alumina composites were found to be more creep resistant than carbon nanofibers-reinforced alumina ones or monolithic alumina with the same grain size distribution. In all the cases, grain boundary sliding was identified as the deformation mechanism

Junio, 2017 · DOI: 10.1016/j.ceramint.2017.02.146




Reactividad de Sólidos

Non-isothermal Characterization of the Precipitation Hardening of a Cu-11Ni-19Zn-1Sn Alloy

Donoso, E; Dianez, MJ; Criado, JM; Espinoza, R; Mosquera, E
Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 48A (2017) 3090-3095
DOI: 10.1007/s11661-017-4063-4



Abstract

The precipitation hardening of a Cu-11Ni-19Zn-1Sn alloy has been studied by means of Differential Scanning Calorimetry (DSC), High-Resolution Transmission Electron Microscopy (HRTEM), and hardness measurements. The calorimetric curves, in the range of temperatures analyzed, show the presence of one exothermic reaction followed by an endothermic one. The exothermic DSC peak is due to the segregation of Cu2NiZn precipitates and it is associated to a noticeable improvement of the mechanical properties of the alloy. The endothermic effect is associated to the dissolution of the Cu2NiZn precipitates into the copper matrix for restoring the starting Cu-11Ni-19Zn-1Sn homogeneous solid solution. The reaction mechanisms of these processes have been proposed from the kinetic analysis of the exothermic and endothermic DSC signals. The results obtained point out that tin plays a decisive role on the precipitation hardening of the alloy, because age hardening is not observed in the case of a Cu-Ni-Zn ternary alloy of similar composition.

Junio, 2017 · DOI: 10.1007/s11661-017-4063-4




Reactividad de Sólidos

The Oxy-CaL process: A novel CO2 capture system by integrating partial oxy-combustion with the Calcium-Looping process

Ortiz, C; Valverde, JM; Chacartegui, R; Benitez-Guerrero, M; Perejon, A; Romeo, LM
Applied Energy, 196 (2017) 1-17
DOI: 10.1016/j.apenergy.2017.03.120



Abstract

This paper proposes a novel CO2 capture technology from the integration of partial oxy-combustion and the Calcium -Looping capture process based on the multicycle carbonation/calcination of limestone derived CaO. The concentration of CO2 in the carbonator reactor is increased by means of partial oxycombustion, which enhances the multicycle CaO conversion according to thermogravimetric analysis results carried out in our work, thus improving the CO2 capture efficiency. On the other hand, energy consumption for partial oxy-combustion is substantially reduced as compared to total oxy-combustion. All in all, process simulations indicate that the integration of both processes has potential advantages mainly regarding power plant flexibility whereas the overall energy penalty is not increased. Thus, the resulting energy consumption per kilogram of CO2 avoided is kept smaller than 4 MI/kg CO2, which remains below the typical values reported for total oxy-combustion and amine based CO2 capture systems whereas CO2 capture efficiency is enhanced in comparison with the Calcium -Looping process.

Junio, 2017 · DOI: 10.1016/j.apenergy.2017.03.120




Nanotecnología en Superficies y Plasma

About the enhancement of chemical yield during the atmospheric plasma synthesis of ammonia in a ferroelectric packed bed reactor

Gomez-Ramirez, Ana; Montoro-Damas, Antonio M.; Cotrino, Jose; Lambert, Richard M.; Gonzalez-Elipe, Agustin R.
Plasma Processes and Polymers, 14 (2017) e1600081
DOI: 10.1002/ppap.201600081



Abstract

Plasma reactions offer an attractive alternative route for the synthesis of a variety of valuable chemical compounds. Here we investigate the parameters that determine the efficiency of ammonia synthesis in a ferroelectric packed bed dielectric barrier discharge (DBD) reactor. The effects of varying the operating frequency, the size of the ferroelectric pellets and the inter-electrode distance have been systematically studied. Under optimised conditions nitrogen conversions in excess of 7% were achieved, higher than those previously obtained using DBD reactors. These findings are discussed with respect to variations in the electrical characteristics of the reactor under operating conditions and in the light of emission spectra obtained as a function of reactant flow rates. These encouraging results signpost future developments that could very substantially improve the efficiency of ammonia synthesis by means of DBD technology.

Junio, 2017 · DOI: 10.1002/ppap.201600081




Nanotecnología en Superficies y Plasma

Impact of moisture on efficiency-determining electronic processes in perovskite solar cells

Salado, Manuel; Contreras-Bernal, Lidia; Calio, Laura; Todinova, Anna; Lopez-Santos, Carmen; Ahmad, Shahzada; Borras, Ana; Idigoras, Jesus; Anta, Juan A.
Journal of Materials Chemistry A, 5 (2017) 10917-10927
DOI: 10.1039/c7ta02264f



Abstract

Moisture-induced degradation in perovskite solar cells was thoroughly investigated by structural (SEM, EDS, XRD and XPS) and device characterization (impedance and intensity modulated photocurrent spectroscopy) techniques. Both the influence of the perovskite composition and the nature of the hole selective material were analyzed. The degradation rate was found to be significantly slower for mixed perovskites and P3HT-based devices. However, for a fixed degradation degree (defined as a 50% drop from the initial photocurrent), all configurations show similar features in small-perturbation analysis. Thus, a new mid-frequency signal appears in the impedance response, which seems to be related to charge accumulation at the interfaces. In addition, faster recombination, with a more important surface contribution, and slower transport were clearly inferred from our results. Both features can be associated with the deterioration of the contacts and the formation of a higher number of grain boundaries.

Junio, 2017 · DOI: 10.1039/c7ta02264f




Nanotecnología en Superficies y Plasma

A compact and portable optofluidic device for detection of liquid properties and label-free sensing

Lahoz, F; Martin, IR; Walo, D; Gil-Rostra, J; Yubero, F; Gonzalez-Elipe, AR
Journal of Physics D: Applied Physics, 50 (2017) 21
DOI: 10.1088/1361-6463/aa6cdd



Abstract

Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers arc required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optolluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.

Junio, 2017 · DOI: 10.1088/1361-6463/aa6cdd




Fotocatálisis Heterogénea: Aplicaciones

NO photooxidation with TiO2 photocatalysts modified with gold and platinum

Rodriguez, MJH; Melian, EP; Santiago, DG; Diaz, OG; Navio, JA; Rodriguez, JMD
Applied Catalysis B-Environmental, 205 (2017) 148-157
DOI: 10.10161/j.apcatb.2016.12.006



Abstract

In this study, a comparative analysis is made of TiO2 modified with Pt or Au in NO photoxidation under different radiation and humidity conditions. The metals were deposited on the TiO2 surface using two methods, photodeposition and chemical reduction. All catalysts were supported on borosilicate 3.3 plates using a dip-coating technique. These modified photocatalysts were characterized by X-ray diffraction analysis (XRD), UV-vis diffuse reflectance spectra (DRS), Brunauer-Emmett-Teller measurements (BET), transmission electron microscopy (TEM) and X-ray photoelectron spectrum analysis (XPS). It was found from the XPS results that Pt and oxidized Pt species coexist on the samples obtained by photodeposition and chemical reduction. In the case of Au, though other oxidation states were also detected the dominant oxidation state for both catalysts is Au. TEM results showed most Au-C particles are below 5 nm, whereas for Au-P the nanoparticles are slightly bigger. With UV irradiation, the Pt modified catalysts do not show any significant improvement in NO photocatalytic oxidation in comparison with the unmodified P25. For Au, both modified photocatalysts (Au-P and Au-C) exceed the photocatalytic efficiency of the unmodified P25, with Au-C giving slightly better results. The incorporation of metals on the TiO2 increases its activity in the visible region. 

Mayo, 2017 · DOI: 10.10161/j.apcatb.2016.12.006




Nanotecnología en Superficies y Plasma - Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Critical Role of Oxygen in Silver-Catalyzed Glaser-Hay Coupling on Ag(100) under Vacuum and in Solution on Ag Particles

Orozco, N; Kyriakou, G; Beaumont, SK; Sanz, JF; Holgado, JP; Taylor, MJ; Espinos, JP; Marquez, AM; Watson, DJ; Gonzalez-Elipe, AR; Lambert, RM
ACS Catalysis, 7 (2017) 3113-3120
DOI: 10.1021/acscatal.7b00431



Abstract

The essential role of oxygen in enabling heterogeneously catalyzed Glaser–Hay coupling of phenylacetylene on Ag(100) was elucidated by STM, laboratory and synchrotron photoemission, and DFT calculations. In the absence of coadsorbed oxygen, phenylacetylene formed well-ordered dense overlayers which, with increasing temperature, desorbed without reaction. In striking contrast, even at 120 K, the presence of oxygen led to immediate and complete disruption of the organic layer due to abstraction of acetylenic hydrogen with formation of a disordered mixed layer containing immobile adsorbed phenylacetylide. At higher temperatures phenylacetylide underwent Glaser–Hay coupling to form highly ordered domains of diphenyldiacetylene that eventually desorbed without decomposition, leaving the bare metal surface. DFT calculations showed that, while acetylenic H abstraction was otherwise an endothermic process, oxygen adatoms triggered a reaction-initiating exothermic pathway leading to OH(a) + phenylacetylide, consistent with the experimental observations. Moreover, it was found that, with a solution of phenylacetylene in nonane and in the presence of O2, Ag particles catalyzed Glaser–Hay coupling with high selectivity. Rigorous exclusion of oxygen from the reactor strongly suppressed the catalytic reaction. Interestingly, too much oxygen lowers the selectivity toward diphenyldiacetylene. Thus, vacuum studies and theoretical calculations revealed the key role of oxygen in the reaction mechanism, subsequently borne out by catalytic studies with Ag particles that confirmed the presence of oxygen as a necessary and sufficient condition for the coupling reaction to occur. The direct relevance of model studies to a mechanistic understanding of coupling reactions under conditions of practical catalysis was reaffirmed.

Mayo, 2017 · DOI: 10.1021/acscatal.7b00431




Reactividad de Sólidos

CO2 capture performance of Ca-Mg acetates at realistic Calcium Looping conditions

Miranda-Pizarro, J; Perejon, A; Valverde, JM; Perez-Maqueda, LA; Sanchez-Jimenez, PE
Fuel, 196 (2017) 497-507
DOI: 10.1016/j.fuel.2017.01.119



Abstract

The Calcium Looping (CaL) process, based on the cyclic carbonation/calcination of CaO, has emerged in the last years as a potentially low cost technique for CO2 capture at reduced energy penalty. In the present work, natural limestone and dolomite have been pretreated with diluted acetic acid to obtain Ca and Ca-Mg mixed acetates, whose CO2 capture performance has been tested at CaL conditions that necessarily imply sorbent regeneration under high CO2 partial pressure. The CaL multicycle capture performance of these sorbents has been compared with that of CaO directly derived from limestone and dolomite calcination. Results show that acetic acid pretreatment of limestone does not lead to an improvement of its capture capacity, although it allows for a higher calcination efficiency to regenerate CaO at reduced temperatures (similar to 900 degrees C) as compared to natural limestone (>similar to 930 degrees C). On the other hand, if a recarbonation stage is introduced before calcination to reactivate the sorbent, a significantly higher residual capture capacity is obtained for the Ca -Mg mixed acetate derived from dolomite as compared to either natural dolomite or limestone. The main reason for this behavior is the enhancement of carbonation in the solid-state diffusion controlled phase. It is argued that the presence of inert MgO grains in the mixed acetate with reduced segregation notably promotes solid state diffusion of ions across the porous structure created after recarbonation.

Mayo, 2017 · DOI: 10.1016/j.fuel.2017.01.119




Nanotecnología en Superficies y Plasma

Non-enzymatic hydrogen peroxide detection at NiO nanoporous thin film-electrodes prepared by physical vapor deposition at oblique angles

Salazar, Pedro; Rico, Victor; Gonzalez-Elipe, Agustin R.
Electrochimica Acta, 235 (2017) 534-542
DOI: 10.1016/j.electacta.2017.03.087



Abstract

In this work we report a non-enzymatic sensor for hydrogen peroxide (H2O2) detection based on nanostructured nickel thin films prepared by physical vapor deposition at oblique angles. Porous thin films deposited on ITO substrates were characterized by X-ray diffraction analysis, scanning electron microcopy (SEMs), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques such as Cyclic Voltammetry (CV) and Constant Potential Amperometry (CPA). The microstructure of the thin films consisted of inclined and separated Ni nanocolumns forming a porous thin layer of about 500 nm thickness. Prior to their use, the films surface was electrochemically modified and the chemical state studied by CV and XPS analysis. These techniques also showed that Ni2+/Ni3+ species were involved in the electrochemical oxidation and detection of H2O2 in alkaline medium. Main analytical parameters such as sensitivity (807 mA M(-1)cm(-2)), limit of detection (3.22 mu M) and linear range (0.011-2.4 mM) were obtained under optimal operation conditions. Sensors depicted an outstanding selectivity and a high stability and they were successfully used to determine H2O2 concentration in commercial antiseptic solutions.

Mayo, 2017 · DOI: 10.1016/j.electacta.2017.03.087




Reactividad de Sólidos

Synthesis, Characterisation, and Photocatalytic Behaviour of Mesoporous ZnS Nanoparticles Prepared Using By-Product Templating

Emrooz, HBM; Rahmani, AR; Gotor, FJ
Australian Journal of Chemistry, 70 (2017) 1099-1105
DOI: 10.1071/CH17192



Abstract

High surface area mesoporous ZnS nanoparticles (MZN) were obtained with the aid of the by-product of the synthesising reaction. This by-product, namely NaNO3, can be considered as a soft template responsible for the formation of pores. Ethanol and water were chosen as the synthesis media. Ultrasonic waves were used as an accelerator for the synthesis of MZNs. Photocatalytic activities of the synthesised samples for the degradation of methylene blue (MB) were investigated under ultraviolet irradiation. Synthesised specimens were characterised using field emission scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, diffuse reflectance spectroscopy, N-2-physisorption, and FT-IR spectroscopy. Results indicated that the synthesis media has a pronounced effect on the surface properties of the final porous particles by several mechanisms. The specific surface area of the MZN samples synthesised in water and ethanol were determined to be 53 and 201m(2)g(-1), respectively. The difference in the specific surface area was attributed to the weak solvation of S2- ions (Na(2)S5H(2)O in ethanol) and also to the by-product of the synthesis reaction. The photocatalytic behaviour of the mesoporous ZnS nanoparticles synthesised in these two media were investigated and the results have been interpreted with the aid of effective surface area, pore volume, and bandgap energy of the specimens.

Mayo, 2017 · DOI: 10.1071/CH17192




Materiales Ópticos Multifuncionales

Design and Realization of a Novel Optically Disordered Material: A Demonstration of a Mie Glass

Miranda-Munoz, Jose M.; Lozano, Gabriel; Miguez, Hernan
Advanced Optical Materials, 5 (2017) art. 1700025
DOI: 10.1002/adom.201700025



Abstract

Herein, a diffusive material presenting optical disorder is introduced, which represents an example of a Mie glass. Comprising spherical crystalline TiO2 nanoparticles randomly dispersed in a mesoporous TiO2 matrix, it is proved that the scattering of light in this inhomogeneous solid can be predicted in an unprecedented manner from single-particle considerations employing Mie theory. To that aim, a study of the dependence of the key parameters employed is performed to describe light propagation in random media, i.e., the scattering mean free path and the transport mean free path, as a function of the size and concentration of the spherical inclusions based on a comparison between experimental results and analytical calculations. It is also demonstrated that Mie glasses enable enhanced fluorescence intensity due to a combined absorptance enhancement of the excitation light combined with an improved outcoupling of the emitted light. The method offers the possibility to perform a deterministic design for the realization of a light diffuser with tailor-made scattering properties.

Mayo, 2017 · DOI: 10.1002/adom.201700025




Nanotecnología en Superficies y Plasma

Energy-Sensitive Ion- and Cathode-Luminescent Radiation-Beam Monitors Based on Multilayer Thin-Film Designs

Gil-Rostra, Jorge; Ferrer, Francisco J.; Pedro Espinos, Juan; Gonzalez-Elipe, Agustin R.; Yubero, Francisco
ACS Applied Materials & Interfaces, 9 (2017) 16313-16320
DOI: 10.1021/acsami.7b01175



Abstract

A multilayer luminescent design concept is presented to develop energy sensitive radiation-beam monitors on the basis of colorimetric analysis. Each luminescent layer within the stack consists of rare-earth-doped transparent oxides of optical quality and a characteristic luminescent emission under excitation with electron or ion beams. For a given type of particle beam (electron, protons, alpha particles, etc.), its penetration depth and therefore its energy loss at a particular buried layer within the multilayer stack depend on the energy of the initial beam. The intensity of the luminescent response of each layer is proportional to the energy deposited by the radiation beam within the layer, so characteristic color emission will be achieved if different phosphors are considered in the layers of the luminescent stack. Phosphor doping, emission efficiency, layer thickness, and multilayer structure design are key parameters relevant to achieving a broad colorimetric response. Two case examples are designed and fabricated to illustrate the capabilities of these new types of detector to evaluate the kinetic energy of either electron beams of a few kilo-electron volts or a particles of alpha few mega-electron volts.

Mayo, 2017 · DOI: 10.1021/acsami.7b01175




Reactividad de Sólidos

New findings on thermal degradation properties of fluoropolymers

Liu, SE; Zhou, WL; Yan, QL; Qi, XF; An, T; Perez-Maqueda, LA; Zhao, FQ
Journal of Thermal Analysis and Calorimetry, 128 (2017) 675-685
DOI: 10.1007/s10973-016-5963-z



Abstract

In this paper, the thermal degradation properties of Viton A and Fluorel are investigated by both isoconversional and combined kinetic analysis methods using non-isothermal thermogravimetry technique. It has been found that the heating rate has little affect on the degradation residue of Fluorel and Viton A, where around 1.3% char was formed for Fluorel and 3.5% for Viton A. Different from the literature, the decomposition of Viton A should be considered as an overlapped dehydrofluorination and carbon chain scission process, with activation energy of 214 +/- 11 and 268 +/- 13 kJ mol(-1), respectively. The effect of dehydrofluorination on degradation of Fluorel is not so significant due to low content of H, and hence, it could be considered as a single-step mechanism with average activation energy of 264 +/- 14 kJ mol(-1). The thermal stability of Fluorel is much better than that of Viton A, and the predicted half-life is around 218 min for Fluorel and 49 min for Viton A at 420 A degrees C, which are consistent with experimental values. If using a single-step model as in the literature for Viton A, its half-life at 420 A degrees C would be underestimated for > 20%.

Mayo, 2017 · DOI: 10.1007/s10973-016-5963-z




Reactividad de Sólidos

Structure evolution in the LaMn1 − xFexO3 + δ system by Rietveld analysis

Cordoba, J. M.; Ponce, M.; Sayagues, M. J.
Solis State Ionics, 303 (2017) 132-137
DOI: 10.1016/j.ssi.2017.02.020



Abstract

The synthesis of LaMn1 − xFexO3 + δ (0 ≤ x ≤ 1) solid solutions perovskite powder was carried out using high-energy milling from the constituent oxides, and further crystallization by high temperature treatment. The compositions of the crystalline phases as a function of x were determined by X-ray powder diffraction using a Rietveld refinement. The relationship between composition and structure was covered. This showed that LaMn1 − xFexO3 + δ exists with the rhombohedral structure (R-3c, 167) only below x = 0.3 and with the orthorhombic structure (Pnma, 62) over x = 0.7. The rhombohedral phase coexists with the orthorhombic phase between 0.4 < x < 0.6.

Mayo, 2017 · DOI: 10.1016/j.ssi.2017.02.020




Nanotecnología en Superficies y Plasma

1-dimensional TiO2 nano-forests as photoanodes for efficient and stable perovskite solar cells fabrication

Salado, M; Oliva-Ramirez, M; Kazim, S; Gonzalez-Elipe, AR; Ahmad, S
Nano Energy, 35 (2017) 215-222
DOI: 10.1016/j.nanoen.2017.03.034



Abstract

During the last years, perovskite solar cells have gained increasing interest among the photovoltaic community, in particularly after reaching performances at par with mature thin film based PV. This rapid evolution has been fostered by the compositional engineering of perovskite and new device architectures. In the present work, we report the fabrication of perovskite solar cells based on highly ordered 1-dimensional vertically oriented TiO2 nano-forests. These vertically oriented porous TiO2 photoanodes were deposited by physical vapor deposition in an oblique angle configuration, a method which is scalable to fabricate large area devices. Mixed (MA0.15FA0.85)Pb(I0.85Br0.15)3 or triple cation Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3 based perovskites were then infiltrated into these 1-dimensional nanostructures and power conversion efficiencies of 16.8% along with improved stability was obtained. The devices fabricated using 1D-TiO2 were found to be more stable compare to the classical 3-dimensional TiO2 photoanodes prepared by wet chemistry. These 1-D photoanodes will be of interest for scaling up the technology and in other opto-electrical devices as they can be easily fabricated utilizing industrially adapted methodologies.

Mayo, 2017 · DOI: 10.1016/j.nanoen.2017.03.034




Fotocatálisis Heterogénea: Aplicaciones

High UV-photocatalytic activity of ZnO and Ag/ZnO synthesized by a facile method

C. Jaramillo-Páez; J.A. Navío; M.C. Hidalgo; M. Macías
Catalysis Today, 284 (2017) 121-128
DOI: 10.1016/j.cattod.2016.11.021



Abstract

ZnO nanoparticles have been successfully synthesized by a facile precipitation procedure by mixing aqueous solutions of Zn(II) acetate and dissolved Na2CO3 at pH ca. 7.0 without template addition. We have investigated the effect of annealing temperature in the final surface and structural properties. Photocatalytic studies were performed using two selected substrates, Methyl Orange and Phenol, both as single model substrates and in mixtures of them.

It has been stated that calcination treatments lead to a significant improvement in the photocatalytic properties of the studied samples, even better than TiO2(P25). As expected, the addition of Ag+ during the photocatalytic degradation of MO increases the reaction rate of the degradation of MO, giving a resultant Ag/ZnO photocatalyst which, after recovery, can be reused at least 18 times for the MO degradation tests, being even more photoactive than ZnO.

Abril, 2017 · DOI: 10.1016/j.cattod.2016.11.021




Reactividad de Sólidos

Mechanochemically Synthesized CuFeSe2 Nanoparticles and Their Properties

Dutkova, E; Skorvanek, I; Sayagues, MJ; Zorkovska, A; Kovac, J; Balaz, P
Acta Physica Polonica A, 131 (2017) 1156-1158
DOI: 10.12693/APhysPolA.131.1156



Abstract

The mechanochemical synthesis of nanocrystalline CuFeSe2 particles prepared by high-energy milling in a planetary mill in an argon atmosphere from copper, iron, and selenium for 60 min is reported for the first time. The CuFeSe2 nanoparticles crystallize in tetragonal structure with mean crystallite size of about 32 +/- 1 nm. High resolution transmission electron microscopy measurements confirmed the presence of agglomerates which are formed by small nanocrystalline domains (5-40 nm). The magnetic data revealed that paramagnetic CuFeSe2 nanoparticles coexist with a small amount of ferromagnetic impurities at room temperature. The magnetic transition towards a weak ferromagnetic or ferrimagnetic behavior occurs in CuFeSe2 at approximately 79 K. The band gap of the CuFeSe2 particles is 0.95 eV which is wider than the band gap in bulk materials (0.16 eV), which could be in many aspects of application more beneficial.

Abril, 2017 · DOI: 10.12693/APhysPolA.131.1156




Nanotecnología en Superficies y Plasma

Formation of nitrile species on Ag nanostructures supported on a-Al2O3: a new corrosion route for silver exposed to the atmosphere

Pelaez, RJ; Espinos, JP; Afonso, CN
Nanotechnology, 28 (2017) 175709
DOI: 10.1088/1361-6528/aa65c0



Abstract

The aging of supported Ag nanostructures upon storage in ambient conditions (air and room temperature) for 20 months has been studied. The samples are produced on glass substrates by pulsed laser deposition (PLD); first a 15 nm thick buffer layer of amorphous aluminum oxide (a-Al2O3) is deposited, followed by PLD of Ag. The amount of deposited Ag ranges from that leading to a discontinuous layer up to an almost-percolated layer with a thickness of <6 nm. Some regions of the as-grown silver layers are converted, by laser induced dewetting, into round isolated nanoparticles (NPs) with diameters of up to ~25 nm. The plasmonic, structural and chemical properties of both as-grown and laser exposed regions upon aging have been followed using extinction spectroscopy, scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. The results show that the discontinuous as-grown regions are optically and chemically unstable and that the metal becomes oxidized faster, the smaller the amount of Ag. The corrosion leads to the formation of nitrile species due to the reaction between NO x species from the atmosphere adsorbed at the surface of Ag, and hydrocarbons adsorbed in defects at the surface of the a-Al2O3 layer during the deposition of the Ag nanostructures by PLD that migrate to the surface of the metal with time. The nitrile formation thus results in the main oxidation mechanism and inhibits almost completely the formation of sulphate/sulphide. Finally, the optical changes upon aging offer an easy-to-use tool for following the aging process. They are dominated by an enhanced absorption in the UV side of the spectrum and a blue-shift of the surface plasmon resonance that are, respectively, related to the formation of a dielectric overlayer on the Ag nanostructure and changes in the dimensions/features of the nanostructures, both due to the oxidation process.

Abril, 2017 · DOI: 10.1088/1361-6528/aa65c0




Química de Superficies y Catálisis

Structural and catalytic properties of Au/MgO-type catalysts prepared in aqueous or methanol phase: application in the CO oxidation reaction

Hernandez, Willinton Y.; Alic, Funda; Navarro-Jaen, Sara; Centeno, Miguel A.; Vermeir, Pieter; Van der Voort, Pascal; Verberckmoes, An
Journal of Materials Science, 52 (2017) 4727-4741
DOI: 10.1007/s10853-016-0715-9



Abstract

Au/MgO and Au/Mg(OH)(2)-type catalysts for CO oxidation reaction were prepared by using two different synthesis methods in presence of either an aqueous or methanol phase. The influence of the porous and morphological properties of the starting magnesium oxide supports was analyzed and correlated with the catalytic performances of the final gold-supported catalysts. It was found that the deposition of gold in the presence of methanol as a solvent avoids the total rehydration of the MgO support and maintains the textural and morphological properties of the starting oxides. The support synthesized by a surfactant-assisted hydrothermal route, having a combined meso-macroporous structure (i.e., MgO-P) showed a positive influence on the CO oxidation reaction as it favored the dispersion of gold and the surface-to-gas phase interaction during the catalytic process.

Abril, 2017 · DOI: 10.1007/s10853-016-0715-9




Química de Superficies y Catálisis

Deep insight into Zr/Fe combination for successful Pt/CeO2/Al2O3 WGS catalyst doping

Gonzalez-Castano, M; Ivanova, S; Ioannides, T; Centeno, MA; Odriozola, JA
Catalysis Science & Technology, 7 (2017) 1556-1564
DOI: 10.1039/c6cy02551j



Abstract

Efficient promotion of the Pt/CeO2/Al2O3 catalytic system was achieved by the addition of two different ceria promoters, Zr and Fe. From the exhaustive data analysis, the key features for enhanced catalytic performance and the roles of each doping metal are established. The combination of both doping agents manifests a synergistic effect reflected in noteworthy improvements in H2 reducibility. In addition, the catalyst's doping influences its chemisorptive properties, which is reflected in an increase of the easiness of carbonaceous species desorption, thus leading to superior catalyst resistance toward deactivation.

Abril, 2017 · DOI: 10.1039/c6cy02551j




Nanotecnología en Superficies y Plasma

Improving the pollutant removal efficiency of packed-bed plasma reactors incorporating ferroelectric components

Gomez-Ramirez, Ana; Montoro-Damas, Antonio M.; Rodriguez, Miguel A.; Gonzalez-Elipe, Agustin R.; Cotrino, Jose
Chemical Engineering Journal, 314 (2017) 311-319
DOI: 10.1016/j.cej.2016.11.065



Abstract

In this work we have studied the plasma removal of air contaminants such as methane, chloroform, toluene and acetone in two parallel plate packed-bed dielectric barrier discharge (DBD) reactors of different sizes. Removal and energy efficiencies have been determined as a function of the residence time of the contaminated air within the reactor, the kind of packed-bed material (ferroelectrics or classical dielectric materials), the frequency and the incorporation of a ferroelectric plate onto the active electrode together with the inter-electrode ferroelectric pellets filling the gap. Results at low frequency with the small reactor and the ferroelectric plate showed an enhancement in energy efficiency (e.g., it was multiplied by a factor of six and three for toluene and chloroform, respectively) and in removal yield (e.g., it increased from 22% to 52% for chloroform and from 15% to 21% for methane). Such enhancements have been attributed to the higher energy of plasma electrons and a lower reactor capacitance found for this plate-modified configuration. A careful analysis of reaction efficiencies and electron energy distributions for the different investigated conditions and the simulation of the electric field at the necks between ferroelectric/dielectric pellets complete the present study. Overall, the obtained results prove the critical role of the barrier architecture and operating conditions for an enhanced performance of pollution removal processes using DBD systems.

Abril, 2017 · DOI: 10.1016/j.cej.2016.11.065




Reactividad de Sólidos

Effect of Thermal Pretreatment and Nanosilica Addition on Limestone Performance at Calcium-Looping Conditions for Thermochemical Energy Storage of Concentrated Solar Power

Valverde, Jose Manuel; Barea-Lopez, Manuel; Perejon, Antonio; Sanchez-Jimenez, Pedro E.; Perez-Maqueda, Luis A.
Enery & Fuels, 31 (2017) 4226-4236
DOI: 10.1021/acs.energyfuels.6b03364



Abstract

The share of renewable energies is growing rapidly, partly in response to the urgent need for mitigating CO2 emissions from fossil fuel power plants. However, cheap and efficient large-scale energy storage technologies are not yet available to allow for a significant penetration of renewable energies into the grid. Recently, a potentially low-cost and efficient thermochemical energy storage (TCES) system has been proposed, based on the integration of the calcium-looping (CaL) process into concentrated solar power plants (CSPs). The CaL process relies on the multicycle carbonation/calcination of CaO, which can be derived from calcination of widely available, cheap, and nontoxic natural limestone (CaCO3). This work explores the effect on the multicycle activity of limestone-derived CaO of thermal pretreatment under diverse atmospheres and the addition of nanosilica, which would be expected to hinder CaO grain sintering. Importantly, optimum CaL conditions for CSP energy storage differ radically from those used in the application of the CaL process for CO2 capture. Thus, calcination should be ideally carried out under low CO2 partial pressure at moderate temperature (below 750 degrees C), whereas CO2 concentration and temperature should be high for carbonation in order to maximize thermoelectric efficiency. When limestone is subjected to carbonation/calcination cycles at these conditions, its performance is critically dependent on the type of pretreatment. Our results indicate that the multicycle CaO activity is correlated with the size of the particles and the CaO pore size distribution. Thus, CaO activity is impaired as particle size is increased and/or CaO pore size is decreased. These observations suggest that pore plugging poses a main limitation to the multicycle performance of limestone-derived CaO at the optimum CaL conditions for TCES in CSPs, which is supported by scanning electron microscopy analysis. Strategies to enhance the performance of natural limestone at these conditions should be therefore oriented toward minimizing pore plugging rather than CaO grain sintering, which stands as the main limitation at CaL conditions for CO2 capture.

Abril, 2017 · DOI: 10.1021/acs.energyfuels.6b03364




Reactividad de Sólidos

Mechanochemical Solvent-Free Synthesis of Quaternary Semiconductor Cu-Fe-Sn-S Nanocrystals

Balaz, Peter; Balaz, Matej; Sayagues, Maria J.; Skorvanek, Ivan; Zorkovska, Anna; Dutkova, Erika; Briancin, Jaroslav; Kovac, Jaroslav; Kovac, Jaroslav, Jr.; Shpotyuk, Yaroslav
Nanoscale Research Letters, 12 (2017) art. 256
DOI: 10.1186/s11671-017-2029-5



Abstract

In this study, we demonstrate a one-pot mechanochemical synthesis of the nanocomposite composed of stannite Cu2FeSnS4 and rhodostannite Cu2FeSn3S8 nanocrystals using a planetary ball mill and elemental precursors (Cu, Fe, Sn, S). By this approach, unique nanostructures with interesting properties can be obtained. Methods of XRD, Raman spectroscopy, UV-Vis, nitrogen adsorption, SEM, EDX, HRTEM, STEM, and SQUID magnetometry were applied. Quaternary tetragonal phases of stannite and rhodostannite with crystallite sizes 18-19 nm were obtained. The dominant Raman peaks corresponding to the tetragonal stannite structure corresponding to A-symmetry optical modes were identified in the spectra. The bandgap 1.25 eV calculated from UV-Vis absorption spectrum is very well-acceptable value for the application of the synthesized material. The SEM micrographs illustrate the clusters of particles in micron and submicron range. The formation of agglomerates is also illustrated on the TEM micrographs. Weak ferromagnetic properties of the synthesized nanocrystals were documented.

Abril, 2017 · DOI: 10.1186/s11671-017-2029-5



icms